$ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lorentz Estimates for Asymptotically Regular Fully Nonlinear Elliptic Equations

We prove a global Lorentz estimate of the Hessian of strong solutions to a class of asymptotically regular fully nonlinear elliptic equations over a C1,1 smooth bounded domain. Here, the approach of the main proof is based on the Possion’s transform from an asymptotically regular elliptic equation to the regular one.

متن کامل

Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations

We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...

متن کامل

A Counterexample to C Regularity for Parabolic Fully Nonlinear Equations

We address the self-similar solvability of a singular parabolic problem and show that solutions to parabolic fully nonlinear equations are not expected to be C.

متن کامل

On the Regularity Theory of Fully Nonlinear Parabolic Equations

Recently M. Crandall and P. L. Lions [3] developed a very successful method for proving the existence of solutions of nonlinear second-order partial differential equations. Their method, called the theory of viscosity solutions, also applies to fully nonlinear equations (in which even the second order derivatives can enter in nonlinear fashion). Solutions produced by the viscosity method are gu...

متن کامل

Boundary Regularity for Fully Nonlinear Integro-differential Equations

We study fine boundary regularity properties of solutions to fully nonlinear elliptic integro-differential equations of order 2s, with s 2 .0; 1/. We consider the class of nonlocal operators L L0, which consists of infinitesimal generators of stable Lévy processes belonging to the class L0 of Caffarelli–Silvestre. For fully nonlinear operators I elliptic with respect to L , we prove that soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Continuous Dynamical Systems - S

سال: 2021

ISSN: 1937-1179

DOI: 10.3934/dcdss.2021080